AntCal Documentation

Radiation Pattern

  • Currently all sources are positioned at the origin
  • Amplitudes are normalized to the maximum radiation of E-/M-dipole respectively
  • Far fields are sampled with limited resolution of 1°

E-dipole:

  • Gain θθ: sin(θ)cos(ϕ)\sin(\theta)\cos(\phi)
  • Gain ϕϕ: sin(ϕ)\sin(\phi)

Demo

Module Parameters: [lpwl_,theta_,phi_,mesh_,opac_,step_,pg_][lpwl\_, {theta\_, phi\_}, mesh\_, opac\_, step\_, pg\_]

fun={πLpwlsin(πLpwlcosΞ)sinπcosΞif cos(πLpwlcosΞ)cos(πLpwl)sinΞ=Indeterminatecos(πLpwlcosΞ)cosπLpwlsinΞotherwise\operatorname{fun} = \begin{dcases} \frac{\left|\pi Lpwl \sin{(\pi Lpwl \cos{\Xi})} \sin{\pi}\right|}{\cos{\Xi}} & \text{if } \frac{\left|\cos{(\pi Lpwl \cos{\Xi})}-\cos{(\pi Lpwl)}\right|}{\sin{\Xi}} = \text{Indeterminate} \\ \frac{\left|\cos{(\pi Lpwl \cos{\Xi})} - \cos{\pi Lpwl}\right|}{\sin{\Xi}} & \text{otherwise} \end{dcases}

where Ξ\Xi is [0,π,π/180][0, \pi, \pi / 180].

max=Max(fun)\operatorname{max} = \operatorname{Max(\operatorname{fun})}
l(th_,ph_)=[sin(th deg)cos(ph deg),sin(th deg)sin(ph deg),cos(th deg)]\operatorname{l}(th\_, ph\_) = [\sin(th\ deg)\cos(ph\ deg), \sin(th\ deg)\sin(ph\ deg), \cos(th\ deg)]
lr(th_,ph_,t_,f_)=sin(th deg)cos(ph deg)sin(t)cos(f)+sin(th deg)sin(ph deg)sin(t)sin(f)+cos(th deg)cos(t)\operatorname{lr}(th\_, ph\_, t\_, f\_) = \sin(th\ deg)\cos(ph\ deg)\sin(t)\cos(f) + \sin(th\ deg)\sin(ph\ deg)\sin(t)\sin(f) + \cos(th\ deg)\cos(t)

M-dipole:

  • Gain θθ: sin(ϕ)\sin(\phi)
  • Gain ϕϕ: sin(θ)cos(ϕ)\sin(\theta)\cos(\phi)

Linear Combination with Arbitrary Phase Shift 1

We have

asin(x+θa)+bsin(x+θb)=csin(x+φ)a\sin(x+\theta_a)+b\sin(x+\theta_b)=c\sin(x+\varphi)

where cc and φ\varphi satisfy

c=a2+b2+2abcos(θaθb),φ=atan2(acosθa+bcosθb, asinθa+bsinθb).\begin{gather*} c=\sqrt{a^2+b^2+2ab\cos(\theta_a-\theta_b)}\text{,} \\ \varphi=\operatorname{atan2}(a\cos\theta_a+b\cos\theta_b,\ a\sin\theta_a+b\sin\theta_b)\text{.} \end{gather*}

Note: atan2(y, x)\operatorname{atan2(y,\ x)} uses Numpy's arctan2 parameter order.

Report

Upload data files to generate figures. Work in progress!

Reference

See IEEE Author Center.

10pt is used by the vast majority of papers.

—How to Use the IEEEtran LaTeX Class

Format and save your graphics using a suitable graphics processing program that will allow you to create the images as PostScript (PS), Encapsulated PostScript (.EPS), Tagged Image File Format (.TIFF), Portable Document Format (.PDF), or Portable Network Graphics (.PNG).

Most charts, graphs, and tables are one column wide (3.5 inches / 88 millimeters / 21 picas) or page wide (7.16 inches / 181 millimeters / 43 picas). The maximum depth a graphic can be is 8.5 inches (216 millimeters / 54 picas).

Author photographs, color, and grayscale figures should be at 300 dpi. Lineart, including tables should be a minimum of 600 dpi.

While IEEE does accept vector artwork, it is our policy is to rasterize all figures for publication. This is done in order to preserve the figures’ integrity across multiple computer platforms.

All color figures should be generated in RGB or CMYK color space. Grayscale images should be submitted in Grayscale color space. Line art may be provided in grayscale OR bitmap colorspace.

When preparing your graphics IEEE suggests that you use of one of the following Open Type fonts: Times New Roman, Helvetica, Arial, Cambria, and Symbol.

—Preparation of Papers for IEEE Transactions and Journals (April 2013)

Footnotes

  1. Trigonometric Identities